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Abstract
We analyse the Newell–Whitham-type car-following model described by a
differential–difference equation with a generalized optimal velocity function
which depends not only on the headway of each car but also on the headway of
the immediately preceding one. Linear stability analysis shows that the model
is stabilized for larger delay time by taking into account the headway of the
immediately preceding car. From the nonlinear analysis, the propagating kink
solution for traffic jams is obtained. The fundamental diagram and the relation
between the headway and the delay time are examined by numerical simulation.
We find that the result from the nonlinear analysis is in good agreement with
that obtained from the numerical simulation.

PACS numbers: 45.70.Vn, 02.60.Cb, 05.45.-a, 89.40.+k

1. Introduction

Traffic flow problems have been intensively studied on the basis of fluid-dynamical models
[1–6], cellular automaton models [7–14], and car-following models [15–19]. Many traffic
models have been proposed and the mathematical features of the models have been
revealed [20]. The advantage of the car-following models is that one can examine the
analytical structure in the models. One car-following model was proposed and analysed by
Newell [15] and Whitham [16]. The model is given by a first-order differential–difference
equation by introducing a delay time which plays an important role in the occurrence of
traffic congestion. Another extended version of a car-following model was proposed by
Bando et al [17–19] without introducing a delay time. This model is described by a second-
order differential equation with an optimal velocity function. The spontaneous transitions
from freely moving traffic to congested traffic have been clarified by linear stability analysis
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and numerical simulation. In the congested flow, the uniform flow becomes unstable and a
stop-and-go state appears. These phenomena have been found experimentally from data on
highway traffic [21–25]. Furthermore, nonlinear analysis of an optimal velocity model has
been performed by Komatsu and Sasa [26]. They have applied a modified Korteweg–de Vries
(MKdV) equation to a traffic jam which is described by a kink–antikink density wave. The
Newell–Whitham-type car-following model described by an optimal velocity function has also
been analysed in detail [27–31]. The exact solutions to the first-order differential–difference
equations with the optimal velocity function have been found.

Many approaches to extending the model toward a realistic traffic model have been
pursued [32–42]. The coupled-map model [32–35] was proposed for investigating open
systems such as junctions and ramps, and to move toward two- or multi-lane models. To obtain
a realistic value of acceleration, a generalized force model [36] was proposed and asymmetry of
sensitivity between the acceleration and deceleration processes [37] was introduced. Another
approach to generalizing the optimal velocity function is to take into account backward
reference [38] and car interaction before the car ahead [39]. The optimal velocity model
which includes car interaction before the car ahead is examined in the context of a difference
equation [39] and second-order differential equation [41,42]. To the best of our knowledge, a
first-order differential–difference equation has not yet been examined within the generalized
optimal velocity model.

The purpose of this paper is to analyse the Newell–Whitham-type car-following model
described by differential–difference equations with an optimal velocity function which depends
not only on the headway of each car but also on the headway of the immediately preceding
one. Linear stability analysis shows that the model is stabilized for larger delay time by taking
into account the headway of the immediately preceding car. From the nonlinear analysis, it is
shown that the traffic congestion is described by the MKdV equation. We will compare the
analytical result with that from the numerical simulation.

This paper is organized as follows. In section 2 the generalized optimal velocity model
described by a differential–difference equation is presented, taking into account the next-
nearest-neighbour interaction. In section 3 the kink solution for traffic jams is obtained from
the nonlinear analysis. In section 4 the numerical simulation is carried out by examining the
relation between the density and the flow, and the relation between the headway and the delay
time. The simulation result is compared with the analytical result. Section 5 is devoted to the
conclusions.

2. Model

We will consider a traffic model given by differential–difference equations of the form

ẋn(t + τ) = (1 − p)V (	xn) + pV (	xn+1) (1)

where xn(t) is the position of the nth car at time t , 	xn(t) = xn+1(t) − xn(t) represents the
headway of the car, and hence 	xn+1(t) is the headway of the immediately preceding car. The
dot on the left-hand side of equation (1) represents the derivative with respect to time t , and
τ is the delay time which is the time lag before reaching optimal velocity. In equation (1),
n = 1, 2, . . . , N represents each car number, with N being the total number of cars. In this
paper, we will consider a periodic boundary condition with respect to the coordinate xn with
period L. According to the original optimal velocity function proposed by Bando et al [17],
we will take a hyperbolic tangent function of the form

V (	xn) = tanh(	xn − bc) + tanh(bc) (2)
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with bc = 2 which gives the safe distance. In order to deal with a more realistic traffic model,
we have to choose the parameters τ , bc and the value of the maximum velocity so as to fit to
experimental data such as the flux–density relation. However, we will not consider this here,
because we are interested in the characteristic properties of our model.

The value of the parameter p in equation (1) reflects the effect of taking into account the car
interaction before the car ahead. The driver sometimes pays attention to not only the headway
but also the headway of the immediately preceding car. If the headway of the preceding car
is small, the driver assumes that the forward driver is decelerating; thus the driver decreases
the optimal velocity even though the headway of his/her car is long enough. On the other
hand, if the headway of the preceding car is long, the driver assumes that the forward driver is
accelerating; thus the driver increases the optimal velocity even though the headway of his/her
car is short. Now, the generalized optimal velocity function given by the right-hand side of
equation (1) has these properties. For larger values of p, the effect of taking into account the
headway of the immediately preceding car becomes large.

Assuming that the delay time τ is small, Taylor expansion in equation (1) leads to

ẍn(t) = a ((1 − p)V (	xn) + pV (	xn+1) − ẋn(t)) (3)

where we have put a = 1/τ , which is called the sensitivity. This model has been analysed
in [41,42]. The purpose of this paper is to examine the model given by equation (1) analytically
and numerically.

The model given by equation (1) has a uniform-flow solution x(0)
n (t) = bn + ct with

b = L/N and c = V (b). Examining the stability against a small perturbation around the
uniform-flow solution, we find that the stability condition is given by

τ <
1 + 2p

2V ′(b)
. (4)

Therefore, by taking into account the headway of the immediately preceding car, the model is
stabilized for larger delay time compared with that in the case of p = 0.

3. Nonlinear analysis

We examine the generalized optimal velocity model by the nonlinear analysis method. In the
long-wavelength approximation, we can find the dispersion relation with respect to k near the
critical point:

z = V ′(bc)ik + V ′(bc)(V
′(bc)τ − 1

2 (1 + 2p))k2 − V ′(bc)
1

24 (1 + 12p − 12p2)ik3

−V ′(bc)
1
48 (1 + 6p + 36p2 − 40p3)k4 + O(k5). (5)

The terms proportional to k3 and k4 in equation (5) are the dispersion term and dissipation
term, respectively. Since the prefactors 1 + 12p − 12p2 and 1 + 6p + 36p2 − 40p3 are positive
for 0 � p � 1, the analytical features, which will be given below, are similar to those for
p = 0. However, the purpose of our analysis is to clarify the effect of taking into account
the headway of the immediately preceding car; hence the p-dependence in the analysis is
examined in detail.

In order to consider the slowly varying behaviour in the long-wavelength region near the
critical point, we introduce a small scaling parameter ε as follows:

V ′(bc)τ = 1
2 (1 + 2p) + ε2. (6)

Using equation (5), we introduce the slow variables X and T as follows:

X = ε(n + V ′(bc)t) (7)

T = ε3 1 + 12p − 12p2

24
V ′(bc)t (8)
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and the headway is expressed as

	xn = bc + ε

√
(1 + 12p − 12p2)V ′(bc)

4|V ′′′(bc)| R(X, T ). (9)

The scale factors in equations (7)–(9) are introduced so as to lead to a simple form of the
equation for R, which will be given below. From equation (1), we obtain the equation for the
headway as
d

dt
	xn(t + τ) = V (	xn+1) − V (	xn) + p(V (	xn+2) − 2V (	xn+1) + V (	xn)). (10)

Substituting equations (7)–(9) into (10) and expanding to the fifth order of ε, one finally
obtains

∂T R − ∂3
XR + ∂XR3 = ε

24

1 + 12p − 12p2

{
− ∂2

XR − 1

48
(1 + 6p + 36p2 − 40p3)∂4

XR

+
1

48
(1 + 2p)(1 + 12p − 12p2)∂2

XR3

}
(11)

because the terms up to the third order of ε vanish. At the critical point where ε = 0,
equation (11) reduces to the MKdV equation. Since we are interested in the steady travelling
solutions to the MKdV equation, we consider R0(X, T ) = R0(X−cT ), where the propagation
velocity c will be determined from the order of the ε-term in equation (11). Thus one finds the
solution to the MKdV equation:

R0 = √
c tanh

(√
c

2
(X − cT )

)
. (12)

Substituting R = R0 + εR1 into equation (11), we get the equation for R1:

LR1 = M[R0] (13)

where

L = c∂X + ∂3
X − 3(∂XR2

0) − 3R2
0∂X (14)

M[R0] = 24

1 + 12p − 12p2

{
∂2
XR0 +

1

48
(1 + 6p + 36p2 − 40p3)∂4

XR0

− 1

48
(1 + 2p)(1 + 12p − 12p2)∂2

XR3
0

}
. (15)

In order to determine the propagation velocity c, we consider the solvability condition for
equation (13):

(�0, M[R0]) ≡
∫ ∞

−∞
dX �0M[R0] = 0 (16)

where �0 is the zeroth eigenfunction of the adjoint operator L† which is given by

L†�0 = 0 L† = −c∂X − ∂3
X + 3R2

0∂X. (17)

By carrying out the integration in equation (16), we can obtain the value of c:

c = 240

5 + 54p + 108p2 − 152p3
. (18)

Using equations (6)–(9), (12), (18), we finally obtain the propagating kink solution

	xn = bc ±
√

30(2V ′τ − 1 − 2p)(1 + 12p − 12p2)V ′

(5 + 54p + 108p2 − 152p3)|V ′′′| tanh

(√
60(2V ′τ − 1 − 2p)

5 + 54p + 108p2 − 152p3

×
{
n + V ′t ×

(
1 − 5(1 + 12p − 12p2)(2V ′τ − 1 − 2p)

5 + 54p + 108p2 − 152p3

)})
(19)
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Figure 1. The relation between the flow and the density in the fundamental diagram for
p = 0, 0.1, 0.2.

where V ′ = V ′(bc) and V ′′′ = V ′′′(bc). From equation (19), one finds that the backward
velocity of the congestion increases as the value of p increases. We can find the relation
between the headway 	xn and the delay time τ :

τ = 1 + 2p

2
+

5 + 54p + 108p2 − 152p3

30(1 + 12p − 12p2)
(	xn − bc)

2 (20)

which will be compared with the numerical simulation result in the next section.

4. Simulation

We solve the differential–difference equations in equation (1) numerically for various values
of p. The initial conditions that we adopt here are

xn(t) =
{

bn 0 � t < τ

bn + yn(τ ) t = τ
(21)

where yn(τ ) is taken to be a uniform random distribution between −0.5 and 0.5. Since we are
interested in the p-dependence, some fixed value of τ is chosen in the simulation.

One of the important problems for traffic flow is that of investigating the relation between
the flux and the density, which is called the fundamental diagram. The density ρ of the cars
is defined by N/L, where we choose L = 200 and vary N from 20 to 250 in the simulation.
The flux Q is defined by the number of cars passing a position per unit time. The data were
accumulated and averaged over 20 000 time steps. Numerical results are plotted in figure 1
for p = 0, 0.1, 0.2 where we choose τ = 0.8 as an example. In the uniform flow, the relation
between flux Q and density ρ is given by

Q = ρV (1/ρ) = ρ (tanh(1/ρ − 2) + tanh(2)) . (22)

In figure 1, it is represented by the dashed curved line. In the uniform-flow region, the numerical
results agree with this curved line. Figure 1 shows that the uniform solution remains stable
over a larger range of densities on taking into account the headway of the preceding car.



11258 S Sawada

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4

1/
τ

∆ xn

p=0
p=0.1

Figure 2. The relation between the headway and 1/τ for the cases of p = 0 and 0.1.

We can summarize the effect of the 	xn+1-dependent term in the fundamental diagram as
follows: in the uniform-flow region, there is no effect on the flow–density relation, because
p-dependence in the generalized optimal velocity function disappears in the case of uniform
flow, as is seen in equation (1). In the congested region, the flow increases as p increases if
ρ < 1/2 and inversely the flow decreases as p increases if ρ > 1/2. The reason is as follows.
When the density is low, the average of the headways is long. If 	xn+1 is long, a larger value
of the velocity than that for the case without dependence on 	xn+1 is allowed. Hence the flow
increases on taking into account the headway of the immediately preceding car. Inversely,
when the density is high, i.e. ρ > 1/2, a small value of the velocity is taken compared with
the case of p = 0, because 	xn+1 is short. Hence the flow decreases on taking into account
the headway of the immediately preceding car.

Finally, we examine the relation between the headway and the delay time for various values
of p. In the congested region, stop-and-go states appear. We can obtain the relation between
the headway and the inverse of the delay time numerically. Numerical results are plotted in
figure 2 for the cases of p = 0 and 0.1 as an example. The theoretical curve obtained from
equation (20) is drawn as a solid curve. Here the neutral curve obtained from the linear analysis
given in equation (4) is also shown, as a dashed curve. We find that the result obtained from
the nonlinear analysis is in good agreement with the simulation result near the critical point.

5. Conclusions

We have analysed the generalized optimal velocity model described by a differential–difference
equation with a generalized optimal velocity function which depends not only on the headway
of each car but also the headway of the immediately preceding one. On taking into account
the headway of the immediately preceding car, the model is stabilized for a larger delay time
compared with that in the case of p = 0. Nonlinear analysis of the model shows that the
traffic congestion is described by the MKdV equation at the critical point. The propagating
kink solution and the relation between the headway and the delay time are obtained. We
found that the analytical result is in good agreement with the numerical simulation near the
critical point. In the simulation, the relation between the density and flow has been examined.
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We found that the uniform solution remains stable over a larger range of densities on taking
into account the headway of the preceding car.
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